

Quality Engineering | Valued Relationships

October 14, 2016

File No. 1000-027-02

Mr. Brad Boyd Quantum Murray 201 Portage Avenue - 18th Floor Winnipeg MB R3B 3K6

RE Dauphin River First Nation Wastewater Lagoon Construction – Lab Testing for Shelby Tube Sample

On September 15, 2016 Quantum Murray LP (QM) delivered Shelby tube samples to Trek Geotechnical Inc. (Trek) for testing. Hydraulic conductivity testing was requested for Shelby tube identified as ST9, Re-test Cell 1. The sample from the Shelby tube was extruded and tested using a flexible wall permeameter following ASTM D5080-10. The test report is attached and the calculated hydraulic conductivity value is as follows:

ST9 $1.13 \times 10^{-10} \text{ m/s} (1.13 \times 10^{-8} \text{ cm/s})$

The test result presented is representative of the soil sample provided. The testing services undertaken by TREK constitutes testing services only and engineering evaluation or interpretation has not been undertaken, but is available upon request.

If you have any questions or require any additional information, please contact the undersigned.

TREK Geotechnical

Per:

FERREIRA Member 22892

Nelson Ferreira, M.Sc., P.Eng.

Geotechnical Engineer

Project No. 1000-027-02 Test Hole Retest Cell 1, ST9

ClientQuantum MurrayTrek Sample #L539aProjectDauphin River First Nation
Wastewater Lagoon ConstructionDepth (m)2.8m - 3.3mSample DateSept 13, 2016

Test Date Sept 19, 2016 to Oct 12, 2016

25.34

Technician Paul Bevel

Specimen Details

Visual Clay, silty, brown, firm, high plasticity

Classification

Comments The specific gravity of the soil was assumed to be 2.75.

Atterberg Limits

 Liquid Limit
 Not Requested
 Permeant
 Distilled, de-aired water

 Plastic Limit
 Not Requested
 Method
 Constant Head

 Plasticity Index
 Not Requested
 Cell Pressure
 137.9 kPa

 Influent Pressure
 116.5 kPa

 Effluent Pressure
 98.6 kPa

Permeation Graph

Test Details

Gradient

Steady Flow Permeation Data

Time Increment (Days)	Elapsed Time (Days)	Flow (Q)		Inflow / Outflow	Average Flow	Temperature	Corrected Hydraulic
		Influent (mL)	Effluent (mL)	Ratio	(mL)	Correction	Conductivity, k ₂₀ (m/s)
1.96	4.33	1.91	1.97	0.97	1.94	0.95	1.05E-10
2.25	6.58	2.70	2.72	0.99	2.71	0.95	1.28E-10
1.38	7.96	1.59	1.52	1.05	1.56	0.95	1.20E-10
1.54	9.50	1.48	1.41	1.05	1.45	0.94	9.81E-11

Average Temperature Corrected Hydraulic Conductivity, k₂₀ (m/s)

1.13E-10 (1.13x10⁻⁸ cm/s)

Consolidation Data

	Average Height (m)	Average Diameter (m)	Moisture Content (%)	Dry Density (kN/m³)	Degree of Saturation (%)	Cell Pressure	Back Pressure
Initial	0.0725	0.0722	25.3	15.7	96.3	137.9	98.6
Final	0.0721	0.0723	27.4	15.5	101.9	137.9	98.6